## Lecture 18: Orbitals of the Hydrogen

Atom
The material in this lecture covers the following in Atkins.
The structure and Spectra of Hydrogenic Atoms
13.2 Atomic orbitals and their energies
(c) Shells and subshells
(b) s-orbitals
(c) Radial distribution function
(d) p-orbitals
(e) d-orbitals

Hydrogenic atomic orbitals

Lecture on-line
Hydrogenic atomic orbitals (PDF Format)
Hydrogenic atomic orbitals (PowerPoint)
Handout for this lecture

Audio-visuals on-line key hydrogen orbitals (PowerPoint)(From the Wilson Group,***) key hydrogen orbitals (PDF)(From the Wilson Group,***)
Vizualization of atomic hydrogen orbitals (PowerPoint)
(From the Wilson Group,***)
Vizualization of atomic hydrogen orbitals (PDF)
(From the Wilson Group,***)
Slides from the text book (From the CD included in Atkins ,**)
Interactive Hydrogen Orbital Plots (For Mac users only)
( Visualizes all the
angular and radial wavefunctions of the hydrogen atom, ******)

## Orbitals of Hydrogenic Atom

The orbitals for the hydrogenic atom are given by $\psi_{\mathrm{nlm}}(\mathrm{r}, \phi, \theta)=\mathrm{R}(\mathrm{r})_{\mathrm{nl}} \mathrm{Y}_{\mathrm{l}, \mathrm{m}}(\phi, \theta) ; \mathrm{n}=1,2,3 \ldots$
$I<n-1 ; \quad m=-I,-I+1, \ldots . I-1$, $I$

## Where

$$
\begin{aligned}
& Y_{l, m}(\phi, \theta)=\sqrt{\frac{2 I+1}{4 \pi} \frac{(I-|m!|}{(I+|m!|)}} P_{I}^{|m|}(\cos \theta) \times \exp [\operatorname{im} \phi] \\
& \text { are eigenfunctions to } L^{2} \text { and } L_{z}
\end{aligned}
$$

With the radial part given as

$$
\mathbf{R}_{\mathbf{n l}}(\mathbf{r})=\mathbf{N}_{\mathbf{n l}}\left(\frac{\rho}{\mathbf{n}}\right)^{\mathbf{l}} \mathbf{L}_{\mathbf{n}, \mathbf{l}}(\mathbf{r}) \mathbf{e}^{-\rho / 2 \mathbf{n}}
$$

Hydrogen Levels


No nodes. $\mathbf{R}_{1,0}(\mathbf{r})$ everywhere positive

1s - orbital

$$
\begin{aligned}
& n=1, I=0 \\
& \Psi_{n, I, m}(\phi, \theta)=R_{n 1}(r) Y_{I, m}((\phi, \theta) \\
& R_{1,0}(r)=2\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-\rho / 2}
\end{aligned}
$$



Value of $Y_{o o}$ is uniform over sphere

## Orbitals of Hydrogenic Atom...prop.dens.

The probability density

$$
P_{\mathrm{nlm}}(\mathrm{r}, \theta, \phi)=\psi_{\mathrm{nlm}}(\mathrm{r}, \theta, \phi)^{*} \psi_{\mathrm{nlm}}(\mathrm{r}, \theta, \phi)
$$

$$
\begin{aligned}
& \boldsymbol{P}_{1,00}(r, \phi . \theta)=\mathbf{2}\left(\frac{\mathbf{Z}}{\mathbf{a}_{\mathbf{o}}}\right)^{3 / 2} \mathrm{e}^{-\rho / 2} Y_{00}^{*} x \\
& \mathbf{2}\left(\frac{\mathbf{Z}}{\mathbf{a}_{\mathbf{0}}}\right)^{3 / 2} \mathrm{e}^{-\rho / 2} Y_{00}=\frac{\mathbf{1}}{\pi}\left(\frac{\mathbf{Z}}{\mathbf{a}_{\mathbf{o}}}\right)^{3} \mathrm{e}^{-\rho}
\end{aligned}
$$

A constant-volume electron-sensitive detector (the small cube) gives its greatest reading at the nucleus, and a smaller reading elsewhere. The same reading is obtained anywhere on a circle of given radius: the $s$ orbital is spherically symmetrical.

## Orbitals of Hydrogenic Atom...prop.dens.



Orbitals of Hydrogenic Atom

## Radial probability density

> constant-volume electron-sensitive etector (the small cube) gives its greatest eading at the nucleus, and a smaller eading elsewhere. The same reading is btained anywhere on a circle of given adius: the $s$ orbital is spherically ymmetrical.


## Orbitals of Hydrogenic Atom Radial probability density


he radial distribution function $P$ gives the probability that the electron ill be found anywhere in a shell of radius $r$. For a $1 s$ lectron in hydrogen, $P$ is a aximum when $r$ is equal to he Bohr radius $a_{0}$. The value $f P$ is equivalent to the reading hat a detector shaped like a pherical shell would give as ts radius was varied.



## Orbitals of Hydrogenic Atom

Orbitals with increasing I are called

$$
\psi_{\mathrm{n} 1 \mathrm{~m}}=\mathbf{R}_{\mathrm{n} 1}(r) Y_{1 m}(\theta, \phi) \quad p \text {-orbitals } \quad m=-1,0,1
$$

$$
\psi_{n 2 m}=R_{n 2}(r) Y_{2 m}(\theta, \phi) \quad d \text { - orbitals } \quad m=-2,-1,0,1,2
$$

$\psi_{n 3 m}=R_{n 3}(r) Y_{3 m}(\theta, \phi) \quad f$-orbitals $\quad m=-3,-2,-1,0,1,2,3$

## Orbitals of Hydrogenic Atom Orbital near nucleus

## $\mathrm{R}_{\mathrm{nl}}$ is a solution to



$$
V_{\text {eff }}
$$

As I increases the centrigugal term $\frac{\hbar^{2} l(I+1)}{2 \mu \mathrm{mr}^{2}}$ becomes more repulsive near nucleus at small $r$. Hence $R_{n l}(r)$ tend to zero as $r \rightarrow 0$ with increasing spead as I becomes larger

Radius, $r$

Close to the nucleus, $p$ orbitals are proportional to $r$, $d$ orbitals are proportional to $r^{2}$, and $f$ orbitals are proportional to $r^{3}$. Electrons are progressively excluded from the neighbourhood of the nucleus as I increases. An s orbital has a finite, nonzero value at the nucleus.

Radius, $r$


The mean radius is given as the espectation value

$$
<\mathbf{r}>=\int \psi_{\mathrm{nlm}} r \psi_{\mathrm{nlm}} d \mathbf{v}
$$

For the hydrogenic atom

$$
<r>_{n I}=n^{2}\left\{1+\frac{1}{2}\left(1-\frac{l(l+1)}{n^{2}}\right\} \frac{a_{0}}{Z}\right.
$$

he variation of the mean radius of a ydrogenic atom with the principal and rbital angular momentum quantum umbers. Note that the mean radius lies in he order $d<\boldsymbol{p}<\boldsymbol{s}$ for a given value of $\boldsymbol{n}$.

## Orbitals of Hydrogenic Atom



The boundary surface of an $s$ orbital, within which there is a 90 per cent probability of finding the electron.

Let us now look at the angular part of the $\mathbf{p}$-functions

$$
\begin{aligned}
& \psi_{n I m}(r, \phi, \theta)=R(r)_{n 1} Y_{l, m}(\phi, \theta) \quad m=-1,0,1 \\
& n=2, I=1 \\
& \Psi_{211}(r, \phi, \theta)=R(r)_{21} Y_{1,1}(\phi, \theta)=-R(r)_{21}\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta e^{i \phi} \\
& \psi_{210}(r, \phi, \theta)=R(r)_{21} Y_{1,0}(\phi, \theta)=R(r)_{21}\left(\frac{3}{4 \pi}\right)^{1 / 2} \cos \theta
\end{aligned}
$$

$\psi_{21-1}(r, \phi, \theta)=R(r)_{21} Y_{1,-1}(\phi, \theta)=R(r)_{21}\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta e^{-i \phi}$
$\Psi_{210}(r, \phi, \theta)=R(r)_{21}\left(\frac{3}{4 \pi}\right)^{1 / 2} \cos \theta \quad I=1, m=0$
The electron has an angular momentum $\overrightarrow{\mathrm{L}}$ such that $\mathrm{L} * \mathrm{~L}=\hbar^{2} \mathrm{l}(\mathrm{I}+\mathbf{1})$
The $z$-component of $\bar{L}$ is $L_{z}=0$


$$
\begin{aligned}
& \Psi_{211}(r, \phi, \theta)=-R(r)_{21}\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta e^{i \phi} \\
& \quad I=1, m=1
\end{aligned}
$$

The electron has an angular momentum $\vec{L}$ such that $L * L=\hbar^{2} l(I+1)$
The $z$-component of $\bar{L}$ is $L_{z}=\hbar$


Orbitals of Hydrogenic Atom
Angular part
$\psi_{21-1}(r, \phi, \theta)=R(r)_{21}\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta e^{-i \phi} \quad I=1, m=-1$
The electron has an angular momentum $\overrightarrow{\mathrm{L}}$ such that $L * L=\hbar^{2} l(1+1)$
The $z$-component of $\bar{L}$ is $L_{z}=-\hbar$


Orbitals of Hydrogenic Atom
Plotting angular part of
$\psi_{210}(r, \phi, \theta)=R(r)_{21}\left(\frac{3}{4 \pi}\right)^{1 / 2} \cos \theta=2 p_{z}$

## Real orbitals



Draw vector $\overrightarrow{\mathbf{R}}$ of length kcos $\theta$ through each point $(\theta, \phi)$ on sphere

The remaining two orbitals are complex

$$
\begin{aligned}
& \Psi_{211}(r, \phi, \theta)=-\mathbf{R}(r)_{21}\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta[\cos \phi+i \sin \phi] \\
& \Psi_{21-1}(r, \phi, \theta)=\mathbf{R}(r)_{21}\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta[\cos \phi-i \sin \phi]
\end{aligned}
$$

However by linear combinations we can get the real orbitals

$$
2 p_{x}=\frac{1}{\sqrt{2}}\left\{\psi_{211}-\psi_{21-1}\right\}=\mathbf{R}(\mathbf{r})_{21}\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta \cos \phi
$$

$$
2 p_{y}=\frac{i}{\sqrt{2}}\left\{\psi_{211}+\psi_{21-1}\right\}=\mathbf{R}\left(r_{21}\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta \sin \phi\right.
$$

## Orbitals of Hydrogenic Atom

## Angular part

$$
\begin{aligned}
& 2 \mathbf{p}_{x}=\frac{1}{\sqrt{2}}\left\{\psi_{211}-\psi_{21-1}\right\}=\mathbf{R}(\mathbf{r})_{21}\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta \cos \phi \\
& 2 p_{y}=\frac{i}{\sqrt{2}}\left\{\psi_{211}+\psi_{21-1}\right\}=\mathbf{R}\left(r_{21}\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta \sin \phi\right.
\end{aligned}
$$

The orbitals $2 p_{x}$ and $2 p_{y}$ have the same energies and eigenvalues to $L^{2}$ as $\psi_{211}$ and $\psi_{21-1}$. However only the latter are eigenfunctions of $L_{z}$


## Orbitals of Hydrogenic Atom



The boundary surfaces of $p$ orbitals. A nodal plane passes through the nucleus and separates the two lobes of each orbital.
The dark and light areas denote regions of opposite sign of the wavefunction.

## Orbitals of Hydrogenic Atom

## Transitions



> In transitions between different energy levels of the hydrogenic atom the following selection rules apply

$$
\begin{aligned}
& \Delta I= \pm 1 \\
& \Delta m=0, \pm 1
\end{aligned}
$$

Grotrian diagram that summarizes the ppearance and analysis of the spectrum of tomic hydrogen. The thicker the line, the ore intense the transition.

What you need to learn from this lecture about the hydrogen atom for the quizz and the final exam

Understand how the balance between kinetic energy and potential energy shapes $\mathbf{R}_{\mathbf{n l}}$ Fig. 13.10

The behaviour of $R_{n 1}(r)$ near the nucleus (Fig 13.16)

The definition of the radial distribution function $P(r)=r^{2} R(r){ }^{2}$ and how it is used to calculate the expaction values $\left\langle\mathrm{r}^{\mathrm{n}}>\right.$

Memorize the relation between real $p$ - orbitals ( $p_{x}, p_{y}, p_{z}$ ) and imaginary p - orbitals ( $\mathrm{p}_{\mathrm{o}}, \mathrm{p}_{-1}, \mathrm{p}_{1}$ ).
Understand the physical difference. Understand plots of ( $p_{x}, p_{y}, p_{z}$ ).

## Same for $d$ and $f$ great, but not required

Selection rules for electronic transitions in thehydrogen atom

$$
\begin{aligned}
& \Delta I= \pm 1 \\
& \Delta m=0, \pm 1
\end{aligned}
$$

Appendix : Orbitals of Hydrogenic Atom..why nodes
$\mathbf{n}=\mathbf{n}_{\mathbf{o}}, \mathbf{I}=\mathbf{0}$
$\psi_{\mathrm{n}, \mathrm{l}, \mathrm{m}}(\phi, \theta)=\mathbf{R}_{\mathrm{nl}}(\mathbf{r}) \mathbf{Y}_{\mathrm{l}, \mathrm{m}}((\phi, \theta)$
For $\mathrm{I}=0$ we have $\mathrm{m}=0$;


$$
R_{3}(r)=\frac{1}{9 \sqrt{3}}\left(\frac{Z}{a_{o}}\right)^{3 / 2}\left(6-2 \rho+\frac{1}{9} \rho^{2}\right) e^{-\rho / 6}
$$

One node at $\left(2-\frac{1}{2} \rho\right)=0$ with $\rho=2 Z \mathrm{Z} / \mathrm{a}_{\mathrm{o}}$ node : $\mathbf{2} \mathrm{a}_{\mathrm{o}} / \mathbf{Z}$

$$
R_{20}(r)=\frac{1}{2 \sqrt{2}}\left(\frac{Z}{a_{o}}\right)^{3 / 2}\left(2-\frac{1}{2} \rho\right) e^{-\rho / 4}
$$


twc nodes at
(6-2 $2+\frac{1}{9} \rho^{2}$ ) $=0$
wi $h \rho=2 Z r / a_{0}$ nodes : 1.9a $\mathrm{a}_{\mathrm{o}}$ Z
and $7.12 \mathrm{r} / \mathrm{a}_{\mathrm{o}}$

## Appendix: Orbitals of Hydrogenic Atom..why nodes

$\mathbf{n}=\mathbf{n}_{\mathbf{0}}, \mathbf{I}=\mathbf{0}$
$\psi_{\mathrm{n}_{\mathrm{o}}, \mathrm{o}, \mathrm{o}}(\phi, \theta)=\mathbf{R}_{\mathrm{n}_{\mathrm{o}}, \mathrm{o}}(\mathrm{r}) \mathrm{Y}_{\mathrm{o}, \mathrm{o}}\left((\phi, \theta)\right.$ Why has $\mathrm{R}_{\mathrm{nI}}(r) \mathrm{n}-1$ nodes ?

We have seen previously that any two independent solutions

$$
\int \psi_{\mathrm{i}} \psi_{\mathrm{j}} \mathrm{dv}=\partial_{\mathrm{ij}}
$$ to the Schrödinger equation must be orthogonal :

Thus any two s-orbitals $R_{n \prime o} Y_{o o}$ and $R_{n o} Y_{o o}$ must be orthorgonal

$$
\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\infty} R_{n^{\prime} o} Y_{o o} R_{n^{\prime} o} Y_{o o} d v=0
$$

## Appendix : Orbitals of Hydrogenic Atom..why nodes

## $2 \pi \pi \infty$ <br> $\int_{0}^{2 \pi} \int_{0} \int_{0} R_{n^{\prime} O} Y_{o o} R_{n^{\prime} O} Y_{o o} d v=0$

$$
\begin{array}{c|c}
\int_{0}^{2 \pi} \int_{0}^{\pi} Y_{o o} Y_{o o} & \sin \theta d \theta d \phi \int_{o}^{r} R_{n^{\prime} O}(r) R_{n o}(r) r^{2} d r=0 \\
1 & \int_{0}^{r} R_{n^{\prime} O}(r) R_{n o}(r) r^{2} d r=0
\end{array}
$$

$Y_{00}$ normalized


The $R_{10}$ function is positive every where

$$
R_{1,0}(r)=2\left(\frac{z}{a_{0}}\right)^{3 / 2} e^{-\rho / 2}
$$

## Appendix : Orbitals of Hydrogenic Atom..why nodes

Thus for $\mathrm{R}_{20}$ to be orthogonal
to $\mathbf{R}_{10}$
$\int_{0}^{r} R_{10}(r) R_{20}(r) r^{2} d r=0$

For $\mathbf{R}_{30}$ to be orthogonal to $R_{10}$ and $R_{20}$ two nodes are required etc...
$R_{20}$ must have positive and negative regions

$$
R_{20}(r)=\frac{1}{2 \sqrt{2}}\left(\frac{z}{a_{0}}\right)^{3 / 2}\left(2-\frac{1}{2} \rho\right) e^{-\rho / 4}
$$

Appendix: Drawing Orbitals of Hydrogenic Atom An aside

How do we plot $Y_{\text {Im }}$ ?


Consider a unit sphere withradius 1. Draw a large number ofunit vectors from the origin ofthe sphere in different directions (e.i. different $\theta, \phi$ ) $\overrightarrow{\mathrm{e}}_{1}, \overrightarrow{\mathrm{e}}_{2}, \overrightarrow{\mathrm{e}}_{3}$, $\overrightarrow{\mathbf{e}}_{4} \ldots \vec{e}_{\mathrm{n}}$

Calculate the value of $\mathrm{Y}_{\mathrm{Im}}(\phi, \theta)$ at the position of each $\overrightarrow{\mathbf{e}}_{\mathrm{n}}$ (e.i for each $\phi_{n}, \theta_{n}$ ). Construct the vectors: $\overline{\mathbf{R}}_{1}, \overline{\mathbf{R}}_{\mathbf{2}}, \overline{\mathbf{R}}_{3}, . . \overline{\mathbf{R}}_{\mathrm{n}}$ where: $\overrightarrow{\mathbf{R}}_{\mathrm{n}}=\overrightarrow{\mathbf{e}}_{\mathrm{n}} \mathrm{Y}_{\mathrm{Im}}(\phi, \theta)$ Draw $\bar{R}_{\mathrm{n}}$


## Appendix: Drawing Orbitals of Hydrogenic Atom An aside



Draw a surface through the
endpoints of all $\vec{R}_{n}$.
This surface represents $Y_{I m}(\theta, \phi)$

## Appendix: Drawing Orbitals of Hydrogenic Atom An aside

For $Y_{o o}(\phi, \theta)$ we have
$\vec{R}_{n}=\frac{1}{2 \sqrt{\pi}} \overrightarrow{\mathbf{e}}_{\mathrm{n}}$ for all $n$

THus $Y_{o o}$ representing the angular part of a ns function is represented by a sphere


We have that $Y_{o o}(\phi, \theta)$ is spherical
e.u. the same for all $\phi_{n}, \theta_{n}$

